DPP-2 (Alternating Current)

Video Solution on Website :-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/102
https://youtu.be/O3WmlqLxMJg

Written Solution on Website:-

Q 1. In the circuit shown in figure current in the circuit is:

(a) 1.27 A
(b) 2.23 A
(c) 4.26 A
(d) 3.87 A

Q 2. $110 \mathrm{~V}(\mathrm{rms})$ is applied across a series circuit having resistance 11Ω and impendence 22Ω. The power consumed is.

(a) 275 W
(b) 366 W
(c) 550 W
(d) 1100 W

Q 3. At a frequency ω_{0} the reactance of a certain capacitor equals that of a certain inductor. If the frequency is changed to $2 \omega_{0}$, what is the ratio of the reactance of the inductor to that of the capacitor?
(a) $4: 1$
(b) $\sqrt{2}: 1$
(c) $1: 2 \sqrt{2}$
(d) $1: 2$

Q 4. An alternating voltage given by $\mathrm{V}=300 \sqrt{2} \sin (50 \mathrm{t})$ (in volts) is connected across a $1 \mu \mathrm{~F}$ capacitor through an AC ammeter. The reading of the ammeter will be:
(a) 10 mA
(b) 40 mA
(c) 100 mA
(d) 15 mA

Q 5. The power factor of the circuit shown in the figure is:

(a) 0.4
(b) 0.2
(c) 0.8
(d) 0.6

Q 6. What will be the reading of the voltmeter across the resistance and ammeter in the circuit shown in the figure?

Q 7. When 100 V . DC is applied across a solenoid a current of 1 A flows in it. When $100 \mathrm{~V}, \mathrm{AC}$ is applied across the same coil, the current drops to 0.5 A . The frequency of the AC is 50 Hz . The impedance and inductance of the solenoid are:
(a) $1000,0.75 \mathrm{H}$
(b) $1000,0.60 \mathrm{H}$
(c) $2000,0.55 \mathrm{H}$
(d) $2000,0.75 \mathrm{H}$

Q 8. In a series LCR the voltage across resistance, capacitance and inductance is 10 V each. If the capacitance is short circuited, the voltage across the inductance will be:
(a) $\frac{10}{\sqrt{2}} \mathrm{~V}$
(b) 10 V
(c) $10 \sqrt{2} \mathrm{~V}$
(d) 20 V

Q 9. Choose the wrong statement:
(a) The peak voltage across the inductor can be greater than the peak voltage of the source in an LCR circuit.
(b) In a circuit containing a capacitor and an AC source the current is zero at the instant the source voltage is maximum.
(c) An AC source is connected to a capacitor. The rms current In the circuit gets increased if a dielectric slab is inserted into the capacitor.
(d) None of the above

Q 10. An AC source producing emf $\mathrm{V}=\mathrm{V}_{0}[\sin \omega \mathrm{t}+\sin 2 \omega \mathrm{t}]$ is connected in series with a capacitor and a resistor. The current found in the circuit is $\mathrm{i}=\mathrm{i}_{1} \sin \left(\omega \mathrm{t}+\phi_{1}\right)+\mathrm{i}_{2} \sin \left(2 \omega \mathrm{t}+\phi_{2}\right)$. Then :
(a) $i_{1}=i_{2}$
(b) $\mathrm{i}_{1}<\mathrm{i}_{2}$
(c) $i_{1}>i_{2}$
(d) i_{1} may be less than, equal to or greater than i_{2}

Q 11. Figure shows a parallel LCR circuit connected to a $200 \mathrm{~V}, \mathrm{AC}$ source. $\mathrm{L}=5 \mathrm{H}, \mathrm{C}=80 \mu \mathrm{~F}$ and $R=40 \Omega$ at resonance let i_{1} and i_{2} be the rms current through L, C and R. Then:

(a) $i_{1}=i_{2}$ and $i_{1}>i_{2}$
(b) $i_{1}=0=i_{2}$
(c) $i_{1}=i_{2}$ and $i_{1}<i_{3}$
(d) $i_{1}=i_{2}$ and $i_{3}>0$

Q 12. A $120 \mathrm{~V}, 60 \mathrm{~W}$ lamp is run from a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ mains supply using a capacitor connected in series with the lamp and supply. What is theoretical value of the capacitor required to operate the lamp at its normal rating?
(a) $3.8 \mu \mathrm{~F}$
(b) $6.6 \mu \mathrm{~F}$
(c) $7.7 \mu \mathrm{~F}$
(d) $13.3 \mu \mathrm{~F}$

Q 13. A series circuit has an impedence of 50.0Ω and a power factor of 0.63 at 60 Hz . The voltage lags the current. To raise the power factor of the cireuit:
(a) an inductor should be placed in series
(b) a capacitor should be placed in series
(c) a resistance should beplaced in series
(d) an inductor or a resistance should be placed in series

Q 14. In the adjoining A.C. circuit the voltmeter whose reading will be zero at resonance is-

(a) V_{1}
(b) V_{2}
(c) V_{3}
(d) V_{4}

